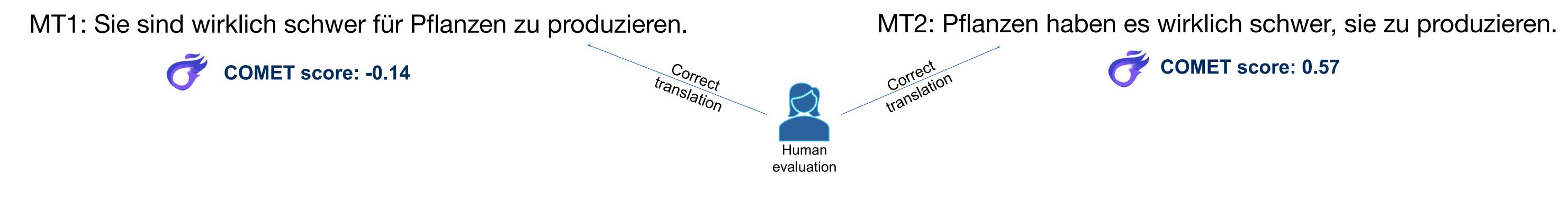
Disentagling Uncertainty for Machine Translation Evaluation Chrysoula Zerva^{1,4}, Taisiya Glushkova^{1,4}, Ricardo Rei^{2,3}, Andre F. T. Martins^{1,2,4}

¹Instituto de Telecomunicações, ²Unbabel, ³Inesc ID, ⁴Instituto Superior Técnico & LUMLIS (Lisbon ELLIS Unit)

They're really difficult for plants to produce. Pflanzen haben grosse Mühe sie zu produzieren.



Can we determine how **confident** our metric is and **why**?

Motivation

MT evaluation metrics share a list of limitations:

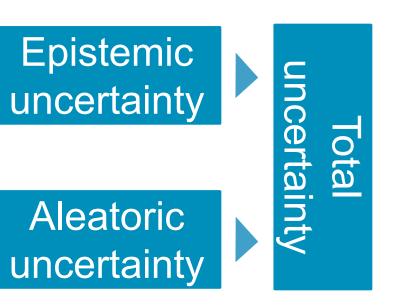
- Limited reliability
- Lack of robustness
- Lack of interpretability for the predicted scores

We aim to fill this gap by investigating **uncertainty** quantification methods for MT evaluation that target specific sources of uncertainty

Methods

Sources of uncertainty

- Out-of-domain data *
- Insufficient training *
- * Complex sentences
- Low quality references *
- Annotator disagreements



Baselines

Variance-based methods which do not target specific uncertainty sources

* σ^2 -fixed: minimise $\frac{1}{|\mathcal{D}|} \sum_{\langle s,t,\mathcal{R},q^* \rangle \in \mathcal{D}} (q^* - \hat{q})^2$

MC dropout (MCD): calculate STD * over multiple (100) inference runs

Aleatoric

Can we learn from annotator disagreement?

***** KL-divergence minimisation: estimate uncertainty from annotator $\mathcal{L}_{\mathrm{KL}} = \frac{(\mu^* - \hat{\mu})^2 + \sigma^{*2}}{2\hat{\sigma}^2} + \frac{1}{2}\log\frac{\hat{\sigma}^2}{\sigma^{*2}} - \frac{1}{2}$ disagreement (STD), when multiple annotations are available for each example

If we do not have access to annotator disagreement?

* Heteroscedastic uncertainty:

learn to predict heteroscedastic noise

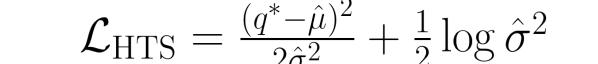
Epistemic/Total uncertainty

Can we learn **directly** from the metric error (ϵ)?

Direct Uncertainty Prediction (DUP) $\mathcal{L}_{\mathrm{HTS}}^{\mathrm{DUP}}(\hat{\epsilon};\epsilon^*) = \frac{(\epsilon^*)^2}{2\hat{\epsilon}^2} + \frac{1}{2}\log(\hat{\epsilon})^2$

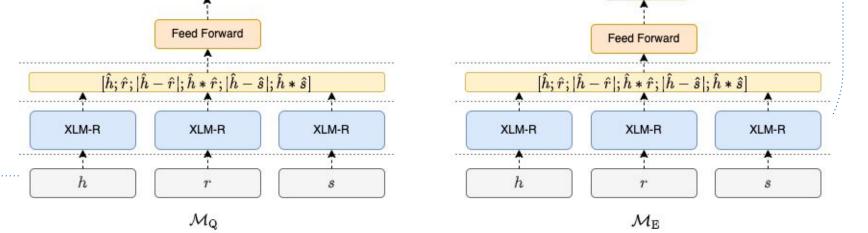
a two-step approach which uses supervision over the quality prediction errors

Deep Ensembles (DE): calculate STD over 5 checkpoints



variance from the training data

*Combine with MCD for total uncertainty prediction



Evaluation

What indicates a **good** uncertainty prediction method?

Accurate & representative uncertainty intervals:

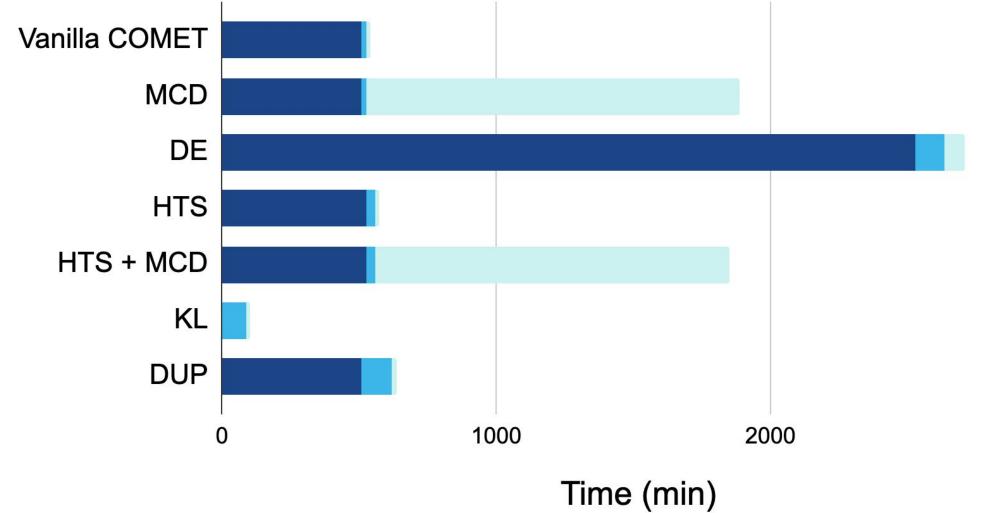
- → Uncertainty Pearson Score (UPS) ······ $r(|q^* \hat{q}|, \hat{\sigma})$
- → Estimated Calibration Error (ECE) ····· $\frac{1}{M} \sum_{b=1}^{M} |\operatorname{acc}(\gamma_b) \gamma_b|$ → Sharpness (sha) $\qquad \qquad \frac{1}{|\mathcal{D}|} \sum_{\substack{f \in \mathcal{D} \\ f \in \mathcal{D}}} \hat{\sigma}^2$
 - ... without compromising the quality prediction accuracy:
- → Predictive Pearson Score (PPS) $r(q^*, \hat{q})$

		UPS \uparrow	ECE \downarrow	Sha. \downarrow	PPS 1
WMT20 DA	σ^2 -fixed	-	0.019	0.415	0.444
	MCD	0.106	0.016	0.377	0.443
	DE	0.134	0.019	0.366	0.460
	HTS	0.177	0.015	0.450	0.444
	HTS+MCD	0.254	0.013	0.528	0.429
	DUP	0.182	0.014	0.437	0.444
WMT21 MQM	σ^2 -fixed		0.055	0.371	0.377
	MCD	0.179	0.024	0.334	0.460
	DE	0.128	0.051	0.236	0.479
	HTS	0.307	0.041	0.284	0.445
	HTS+MCD	0.311	0.037	0.388	0.445
	KL	0.296	0.046	0.273	0.443
	DUP	0.285	0.039	0.634	0.377

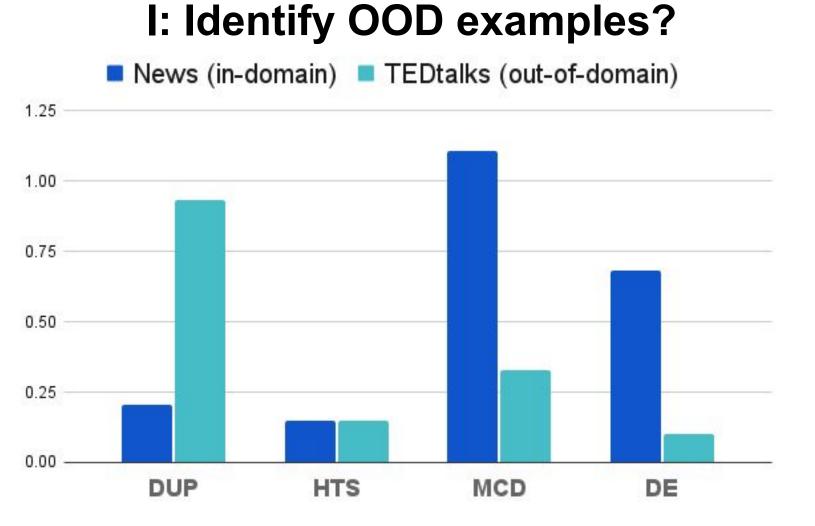
Performance on WMT 2020 (DA) and 2021 (MQM) metrics data; averaged over all language pairs

Computational Cost

Train on WMT 1719 Finetuning on MQM 2020 Inference on MQM 2021

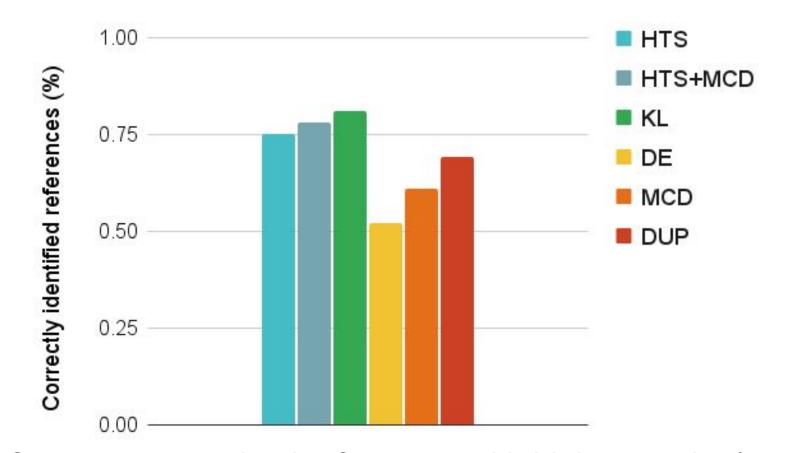


Case-studies: Can we use predicted uncertainty to .



Sharpness (average uncertainty) on two En-Ru test sets from the WMT21 metrics task

II: Identify high quality references?



Correctly recognized references with higher quality $(r_{+} vs r_{-})$ by different uncertainty predictors on the En-De news data

Main Takeaways

improved results on uncertainty prediction for the WMT metrics task datasets ✓ a substantial reduction in computational costs (compared to MCD and DE) the ability of new uncertainty predictors to target different aleatoric and epistemic uncertainty sources

in MT evaluation, such as:

- low quality references
- out-of-domain data

3000

