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Sources of uncertainty
✽ Out-of-domain data
✽ Insufficient training
✽ Complex sentences
✽ Low quality references
✽ Annotator disagreements

MT1: Sie sind wirklich schwer für Pflanzen zu produzieren.

Motivation
MT evaluation metrics share a list of limitations:

▶ Limited reliability
▶ Lack of robustness
▶ Lack of interpretability for the predicted scores

They're really difficult for plants to produce.

MT2: Pflanzen haben es wirklich schwer, sie zu produzieren.

Pflanzen haben grosse Mühe sie zu produzieren.

COMET score: -0.14 COMET score: 0.57
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Can we determine how confident our metric is and why? 

We aim to fill this gap by 
investigating uncertainty 

quantification methods for MT 
evaluation that target specific 

sources of uncertainty
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Methods

What indicates a good uncertainty prediction method?

Accurate & representative uncertainty intervals:

➔ Uncertainty Pearson Score (UPS)

➔ Estimated Calibration Error (ECE)

➔ Sharpness (sha)

… without compromising the quality prediction accuracy:

➔ Predictive Pearson Score (PPS)

Baselines

Computational Cost

Variance-based methods which do not 
target specific uncertainty sources

✽ σ2-fixed: minimise

✽ MC dropout (MCD): calculate STD 
over multiple (100) inference runs

✽ Deep Ensembles (DE): calculate 
STD over 5 checkpoints

Total 
uncertainty

Aleatoric

Can we learn from annotator disagreement?

✽ KL-divergence minimisation:

If we do not have access to annotator disagreement?

✽ Heteroscedastic uncertainty:

estimate uncertainty from annotator 
disagreement (STD), when multiple 
annotations are available for each example

learn to predict heteroscedastic noise 
variance from the training data

✽Combine with MCD for total uncertainty prediction

Epistemic/Total uncertainty

Performance on WMT 2020 (DA) and 2021(MQM) metrics 
data; averaged over all language pairs 

Can we learn directly from the metric error (𝝐)?
✽ Direct Uncertainty Prediction (DUP)

a two-step approach which uses supervision 
over the quality prediction errors 

Sharpness (average uncertainty) on two En-Ru test 
sets from the WMT21 metrics task

Case-studies: Can we use predicted uncertainty to
II: Identify high quality references?

Correctly recognized references with higher quality (r+ vs r-) 
by different uncertainty predictors on the En-De news data

I: Identify OOD examples?

Main Takeaways

✓ improved results on uncertainty prediction for the 
WMT metrics task datasets

✓ a substantial reduction in computational costs 
(compared to MCD and DE)

✓ the ability of new uncertainty predictors to target 
different aleatoric and epistemic uncertainty sources 
in MT evaluation, such as:
● low quality references
● out-of-domain data
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